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Second-order Wagner theory for
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The theory of Wagner from 1932 for the normal symmetric impact of a two-
dimensional body of small deadrise angle on a half-space of ideal and incompressible
liquid is extended to derive the second-order corrections for the locations of the higher-
pressure jet-root regions and for the upward force on the impactor using a systematic
matched-asymptotic analysis. The second-order predictions for the upward force on
an entering wedge and parabola are compared with numerical and experimental
data, respectively, and it is concluded that a significant improvement in the predictive
capability of Wagner’s theory is afforded by proceeding to second order.

1. Introduction
The dynamics of high-velocity water entry is of practical importance in numerous

applications ranging in scale from droplet motion to asteroid impact. As described
in the reviews of Faltinsen (1990), Korobkin (1996), Korobkin & Pukhnachov (1988)
and Mizoguchi & Tanizawa (1996), for example, the most well-studied scenario is the
slamming of the fore-body of a ship on the sea surface, which can cause localized and
eventually catastrophic damage to the hull. The accurate prediction of the pressure
distribution and force on an impactor is therefore of significant importance to ship
design, which is the practical motivation for this paper.

Even in the simplest two-dimensional water-entry problem in which the flow starts
from rest and the effects of viscosity, compressibility, gravity, surface tension and
air cushioning are neglected, the nonlinearities involved in the locations of, and
boundary conditions on, the impactor and free surface have hampered severely the
mathematical analysis. The only exact analytic results are for the self-similar flow
of a wedge entering a liquid half-space, which was first studied by Dobrovol’skaya
(1969). More recently Fraenkel & Keady (2004) proved that the supremum of the
contact angle between the free surface and the wedge is strictly less than π/4 for all
vertex angles in the open interval (0, π), as well as developing an ‘all-purpose’ integral
equation formulation that allowed for the first time numerical computation of the
singular limits of small vertex angle, of the contact angle tending to its supremum and
of small contact angle. The last of these limits corresponds to the large-vertex-angle
regime in which the vectors normal to the impacting body and to the undisturbed
free surface are nearly parallel. The main thrust of theoretical efforts has focused on
the simplifications afforded by this ‘small deadrise angle’ regime based on those used
in the pioneering work of von Kármán (1929) and Wagner (1932) on the alighting
of seaplanes. The theory is applicable during a small initial time interval to the
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impact of an arbitrary blunt body and has the following structure. In an outer region
comparable in size to the extent of the impactor below the undisturbed waterline
the bulk flow is at leading order as if the liquid were being loaded by an expanding
flat plate, with the boundary conditions being linearized and imposed on the initial
position of the free surface. This description breaks down at the ends of the plate
in inner regions a factor of the deadrise angle squared smaller than the outer one,
where the nonlinear terms in the Bernoulli condition come into play and force the
free surfaces to ‘turn over’ in small high-pressure jet-root regions on the body, ejecting
thereby thin, rapidly moving splash jets. A key observation of Wagner (1932) was that
at leading order the perturbed free surface must rise up to meet the impacting body
at the ends of the plate. These so-called ‘Wagner conditions’ determine the extent of
the expanding flat plate, and hence the subset of the contact region over which the
pressure is appreciable. Although Wagner’s ideas have been justified formally using
matched-asymptotic expansions in the studies of, for example, Cointe & Armand
(1987), Wilson (1989), Cointe (1989), Howison, Ockendon & Wilson (1991) and
Oliver (2002), it is somewhat disappointing that in the majority of applications the
leading-order theory predicts values for the upward force on the impactor that are
significantly higher than the measured ones.

Korobkin (2004) describes in detail the numerous strategies that have been proposed
to improve the accuracy of Wagner’s theory, and to extend thereby its domain of
validity from small deadrise angles (in the range 5◦–15◦) to moderate ones (in the
range 15◦–30◦).† For example, in Logvinovich (1969), Vorus (1996), Zhao, Faltinsen
& Aarsnes (1996), Mei, Liu & Yue (1999), Faltinsen (2002) and Korobkin (2004), a
combination of at least two of the following modifications to the leading-order theory
is employed:

(i) retaining a nonlinear term in one or more of the boundary conditions or in the
Bernoulli condition for the pressure on the impactor;

(ii) linearizing the boundary conditions onto the line drawn through the jet roots,
rather than onto the location of the undisturbed free surface;

(iii) applying Wagner’s theory to the free surface, but not to the body profile, for
a body of finite deadrise angle on which the full kinematic boundary condition is
retained;

(iv) evaluating the upward force by integrating the pressure on the body over the
segment where it is positive or over the segment below the initial waterline.
Even though these so-called generalized Wagner theories are based on ad hoc
approximations, the resulting predictions for the upward force are in surprisingly
good agreement with numerical solutions of the similarity formulation for wedge
entry by Dobrovol’skaya (1969), with numerical solutions of the full problem or with
experimental data. With regard to obtaining justification for these approximations
Korobkin (2004) notes the following. “One may expect that the formal asymptotic
analysis of the entry problem by means of the method of matched asymptotic
expansions including higher-order terms and matching properly the outer expansion
(in the main flow region) with the inner expansion (in the jet region) would be
more promising. Up to now even the second-order asymptotic solution of the

† Faltinsen (1990), Howison et al. (1991) and Korobkin (1996), for example, discuss how this
statement must made with the caveat that in practice Wagner’s theory is not applicable at very small
deadrise angles (of less than approximately 5◦), the effects of air cushioning becoming increasingly
important as the zero-deadrise-angle limit is approached.
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two-dimensional impact problem has not been obtained.” This statement provides
the mathematical motivation for this paper.

The second-order analysis presented in this paper is closest to the analyses of
Cointe & Armand (1987), Fontaine & Cointe (1998), Oliver (2002) and Korobkin
(2006), with the following differences. Cointe & Armand (1987) and Fontaine &
Cointe (1998), who considered a circular cylinder and wedge, respectively, did not
solve explicitly the relevant second-order outer potential problem or account for the
second-order correction to the locations of the jet root regions. Although the latter
was accounted for by Oliver (2002), the analysis was not taken to second order.
Korobkin (2006) presented a second-order analysis for the closely related problem of
the uniform-normal impact of a liquid parabola onto a rigid flat plate; his analysis
involved a non-standard transformation of the dependent variables, which, as will
become apparent, is only applicable to this special case because the jet roots lie at
leading order on the plate on which the boundary conditions in the outer region are
linearized and imposed.

The outline of the paper is as follows. In § 2 the problem is formulated and the
formal asymptotic structure in the small-deadrise-angle regime is described. In § 3
the well-known leading-order outer analysis is reviewed and extended to obtain the
higher-order terms in the expansions of the leading-order variables at their points
of non-uniformity. These terms and a non-local transformation of the leading-order
outer solution are required for the second-order outer analysis, which is described in
§ 4. In § 5 the second-order correction to the upward force on the impactor is described.
The details of the solutions in the inner regions, matching and force calculation are
given in the Appendices. In § 6 three applications of the second-order theory are
described and comparisons made with numerical and experimental data. A summary
of the main results and of their theoretical and practical implications is given in § 7.

2. Problem statement and asymptotic structure
The majority of this paper is devoted to the two-dimensional normal impact of a

rigid symmetric body of small deadrise angle on a half-space of ideal and incompres-
sible liquid. As in the theory of Wagner (1932), viscosity, gravity, compressibility,
surface tension and air cushioning effects are neglected, and the impactor is assumed
to be moving with constant downward velocity V . Cartesian coordinates (x†, y†) are
introduced, with origin at the point of impact at time t† = 0. Initially the liquid is
stationary and lies in the lower half-plane y† < 0. The location of the impactor is
denoted by y† = Lf (εx†/L) − V t†, where L is a typical penetration distance and
the body profile f is an even function of x† such that f (0) = 0, f ′(εx†/L) > 0 for
εx†/L > 0, where f ′ denotes the derivative of f with respect to its argument, and
f (εx†/L) = O(1) for |εx†| = O(L) in the small-deadrise-angle regime in which ε � 1.
The velocity potential, multi-valued free surface, pressure and upward force on the
impactor (per distance L in the direction perpendicular to the (x†, y†)-plane) are
denoted by φ†(x†, y†, t†), y† = h†(x†, t†), p†(x†, y†, t†) and F †(t†), respectively. The
governing equations are non-dimensionalized on the penetration depth by setting

x† = Lx∗, y† = Ly∗, t† =
Lt

V
, φ† = LV φ∗, h† = Lh∗, p† = ρV 2p∗, F † = ρV 2LF ∗,

where ρ is the constant liquid density. The dimensionless model problem is

∇∗2φ∗ = 0, (2.1)
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Figure 1. Asymptotic structure in the small-deadrise-angle regime ε � 1 (a) showing the
inner regions near the right-hand turnover point (b): outer region (I) of size O(1/ε); (artificial)
intermediate region (II) of size O(1); inner jet-root region (III) on the body of size O(ε); jet
region (IV) on the body of horizontal extent O(1/ε) and of thickness O(ε).

in the fluid region of figure 1, with the kinematic condition on the body that

on y∗ = f (εx∗) − t:
∂φ∗

∂y∗ = −1 + εf ′(εx∗)
∂φ∗

∂x∗ , (2.2)

and the kinematic and Bernoulli conditions on the free surfaces that

on y∗ = h∗(x∗, t):
∂φ∗

∂n
= v∗

n, p∗ = 0, (2.3a, b)

where ∂/∂n denotes the outward normal derivative to, and v∗
n the normal velocity of,

the relevant free surface and the pressure is given by the Bernoulli equation

p∗ = −∂φ∗

∂t
− 1

2
|∇∗φ∗|2. (2.4)

The ‘turnover points’ are defined in this paper to be the points of upward tangency
of the free surface, with x∗-coordinates denoted by ±d∗(t), as illustrated in figure 1.
As in all previous applications of Wagner’s theory, the initial and far-field conditions
are taken to be (writing r∗2 = x∗2 + y∗2)

φ∗(x∗, y∗, 0) = 0, h∗(x∗, 0) = 0, d∗(0) = 0; (2.5a−c)

as y∗ → −∞: φ∗ = O(1/r∗); as |x∗| → ∞: h∗ → 0. (2.6a, b)

As described by Korobkin & Pukhnachov (1988), Faltinsen (1990) and Korobkin
(1996), for example, the effects of compressibility and surface tension are restricted to
an initial time interval, T say, that is typically much smaller than L/V for a wide class
of water impact problems in which the effects of viscosity become important on time
scales much larger than L/V or in very thin boundary layers on the impactor on the
time scale L/V . The good agreement with experiment of numerous predictions of the
leading-order theory provide strong evidence that the small-time limit of the Wagner
model (that is applicable on the time scale L/V ) is consistent with the long-time limit
of the full model (that is applicable on the time scale T and incorporates the effects of
compressibility, viscosity and surface tension), and hence for the validity of the initial
conditions (2.5). The far-field condition (2.6a) is a necessary condition for bounded
spatially integrated kinetic energy, while (2.6b) corresponds to the assumption that
the free surface asymptotes to its undisturbed elevation far from the point of impact.

The primary aim of this paper is to find the second-order correction to the upward
force on the impactor. Denoting by Γ the a priori unknown wetted region lying in
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Figure 2. Mixed-boundary-value problem for the potential φ0 in outer region I; the initial
conditions are φ0(x, y, 0) = 0, h0(x, 0) = 0 and d0(0) = 0; the far-field conditions are φ0 = O(1/r)
as y → −∞, where r2 = x2 + y2, and h0 → 0 as |x| → ∞; the matching conditions at the free
points, z = ± d0(t), are described in the text.

|x∗| <c∗(t) say, by θ∗ the angle between the upward pointing normal to the impactor
and the positive y∗-axis and by s∗ the tangential coordinate around the impactor in
the positive x∗-direction (with origin at x∗ = 0, say), the upward force is given by

F ∗(t) =

∫
Γ

p∗(x∗, f (εx∗) − t, t) cos θ∗ ds∗ = 2

∫ c∗(t)

0

p∗(x∗, f (εx∗) − t, t) dx∗, (2.7)

where in the second equality the symmetry of the flow about the y∗-axis and the
expression dx∗/ds∗ = cos θ∗ have been used.

It is shown in detail by, for example, Cointe & Armand (1987), Cointe (1989),
Greenhow (1987), Howison et al. (1991), Korobkin (1996) and Oliver (2002), that in
the small-deadrise-angle regime the configuration just after impact is as illustrated in
figure 1, wherein two thin jets are being ejected along the body from two small jet-root
regions. In this paper Van Dyke’s matching rule is used to match the solution in region
I with the one in region III by introducing an intermediate region II between them
of size of the order of the penetration depth (see figure 1). This methodology is based
on the one used by Oliver (2002), Howison, Ockendon & Oliver (2002), Howison,
Ockendon & Oliver (2004) and Howison et al. (2005). The symmetry of the flow
about the y∗-axis is used throughout to simplify the analysis. It is convenient to work
with the complex potential w∗(z∗, t) =φ∗ + iψ∗, where z∗ = x∗ + iy∗ and ψ∗(x∗, y∗, t)
is the stream function; the latter is taken to tend to zero at infinity, without loss of
generality, so that ψ∗ is equal to zero on the y∗-axis.

3. Leading-order Wagner theory
The size of the outer region away from the jet roots is determined by the distance

between them, which is of O(1/ε) when the penetration depth t is of O(1). The outer
scalings are therefore given by

z∗ =
z

ε
, w∗ =

w

ε
, h∗ = h, d∗ =

d

ε
. (3.1)

The boundary conditions that follow from (2.2)–(2.3) are linearized and imposed on
y = 0, while w, h and d are expanded as the asymptotic series

w = w0 + εw1 + o(ε), h = h0 + εh1 + o(ε), d = d0 + εd1 + ε2d2 + o(ε2), (3.2a−c)

with the leading- and second-order outer potential and stream function being defined
by wj =φj + iψj (j = 1, 2). At leading order the resulting mixed boundary value
problem for φ0 is shown in figure 2; the initial and far-field conditions in the caption
follow directly from (2.5)–(2.6). It is shown in Appendix B that matching with the
leading-order solution in the inner-jet-root region in Appendix A leads to the following
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matching conditions at the right-hand free point:

as z → d0(t): w0(z, t) ∼ id0(t) − 4iḋ0(t) (HJ (t)(z − d0(t))/π)1/2 , (3.3)

at x = d0(t): h0(x, t) = f (d0(t)) − t, (3.4)

where the overdot denotes the time derivative and HJ (t) is the leading-order thickness
of the splash jet ejected from each of the jet roots, as illustrated in figure 8. Similar
conditions at the left-hand free point or the symmetry of the flow about the y-axis
close the problem. At the free points the square-root singularities in the leading-order
outer complex potential dictated by (3.3) result in inverse-square-root singularities in
the leading-order outer pressure (see Appendix C), reflecting the leading-order fluid
response to the high pressure in the inner jet-root regions associated with the reversal
of flow direction in each of them (see Appendix A). As alluded to in § 1, the so-called
Wagner conditions (3.4) reflect the fact that at leading order the jet-root regions,
which are a factor of the deadrise angle squared smaller than the outer one, lie on
the body, so that the outer free surface must ‘rise up’ to meet the impactor at the free
points.

The leading-order fluid response is as if the body were an expanding flat plate in
the contact set between the free points, moving instantaneously with unit downward
velocity, with the solution being the usual one given by

w0(z, t) = i
(
z − (z2 − d0(t)

2)1/2
)
; (3.5)

the term containing the square root is defined on the plane cut along (−d0(t), d0(t))
on the x-axis, with (x2 − d0(t)

2)1/2 being real and positive (negative) for x >d0(t)
(x < − d0(t)). The kinematic boundary condition on the non-contact set in figure 2
implies that the leading-order elevation of the free surface is given by

h0(x, t) = −t +

∫ t

0

|x|
(x2 − d0(τ )2)1/2

dτ, (3.6)

the integral being real and bounded for |x| � d0(t) (in accordance with (3.4); see (3.8))
if and only if the free points are advancing (i.e. ḋ0(t) > 0), which will be verified a
posteriori. The local expansions of (3.5)–(3.6) at the right-hand free point are given
by

as z → d0(t): w0 ∼ id0(t) − i(2d0(t)(z − d0(t)))
1/2 + i(z − d0(t)), (3.7)

as x ↓ d0(t): h0 ∼ f (d0(t)) − t − (2d0(t)(x − d0(t))
1/2

ḋ0(t)
+ h

†
0(t)(x − d0(t)), (3.8)

where the last term in each of them is required for the matching in Appendix B and

h
†
0(t) =

∫ t

0

1

(d0(t)2 − d0(τ )2)1/2
∂

∂τ

(
d0(τ )

ḋ0(τ )

)
dτ, (3.9)

so that (3.5)–(3.6) satisfy the matching conditions (3.3)–(3.4) provided

HJ (t) =
πd0(t)

8ḋ0(t)2
,

∫ t

0

d0(t)dτ

(d0(t)2 − d0(τ )2)1/2
= f (d0(t)). (3.10a, b)

Expression (3.10a) determines in terms of d0(t) the thickness of the jet ejected from
each of the jet roots, while (3.10b) is an Abel integral equation for d0(t), which as
described by Howison et al. (1991), for example, may be inverted to give the algebraic
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Figure 3. Mixed-boundary-value problem for the displacement potential Υ0 in outer region I.
In addition, the initial conditions are Υ0(x, y, 0) = 0 and d0(0) = 0; the far-field conditions are
Υ0 =O(1/r) as y → −∞; the first partial derivatives of Υ0 are continuous at the free points.

equation ∫ d0(t)

−d0(t)

(f (ξ ) − t) dξ

(d0(t)2 − ξ 2)1/2
= 0. (3.11)

Making the change of variables ξ = d0(t) sin θ and differentiating with respect to t

gives

ḋ0(t)

∫ π/2

0

f ′(d0(t) sin θ) sin θdθ =
π

2
, (3.12)

confirming that that the free points are advancing, since, by assumption, f (0) = 0
and f ′(x) > 0 for x > 0; (3.12) is also used in § 4 and in Appendix B. This completes
the solution of the leading-order outer problem. For the purposes of this paper three
points are noted.

First, writing the kinematic condition on the the free surface in terms of leading-
order outer stream function, ψ0, which satisfies ψ0(d0(t), 0, t) = d0(t) and ψ0(∞, 0, t) =
0, implies that the rate of change of the cross-sectional area of the right-hand outer
‘splash-up’ region is given by

∂

∂t

(∫ ∞

d0(t)

h0(x, t) dx

)
= d0(t) − ḋ0(t)h0(d0(t), t). (3.13)

Wilson (1989) noted that this expression may be written in the form

∂

∂t

(∫ d0(t)

0

(f (x) − t) dx +

∫ ∞

d0(t)

h0(x, t) dx

)
= −ḋ0(t)(h0(d0(t), t) − f (d0(t)) + t),

implying that the Wagner condition (3.4) is a necessary and sufficient condition for
leading-order global conservation of mass, i.e. at leading order the outer-splash-up
regions are made up of liquid displaced by the impact, with the total cross-sectional
area of the splash jets being a factor of O(ε) smaller.

Secondly, there exists a Baiocchi transformation that leads to a useful formulation
of the leading-order problem in terms of the displacement potential, which is defined
by

Υ0 = −
∫ t

0

φ0(x, y, τ ) dτ. (3.14)

This function was introduced in the context of the water entry problem by Korobkin
(1982) and will feature in the second-order outer analysis in § 4. The mixed-boundary-
value problem in figure 2 implies the one for the displacement potential in figure 3
in which the condition on the contact set follows from the Wagner condition (3.4).
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Howison et al. (2004) describe how the relevant (least-singular) solution

∂Υ0

∂x
− i

∂Υ0

∂y
=

i(z2 − d0(t)
2)1/2

π

∫ d0(t)

−d0(t)

(t − f (ξ ))

(d0(t)2 − ξ 2)1/2
dξ

(ξ − z)
(3.15)

has the far-field expansion

∂Υ0

∂x
− i

∂Υ0

∂y
=

i

π

∫ d0(t)

−d0(t)

(f (ξ ) − t)dξ

(d0(t)2 − ξ 2)1/2
+ O(1/z2),

as y → −∞, so that the far-field condition for Υ0 in the caption to figure 3 can only be
satisfied if (3.11) pertains, i.e. (3.11) is both the consistency condition for existence of
the solution to the corresponding Riemann boundary-value problem (that is bounded
at the free points and zero at infinity; see, for example, Gakhov 1966) and the inverse
of (3.10b).

Thirdly, assuming that the splash jets do not separate from the body, the relevant
scalings for the tangential coordinate, tangential velocity and jet thickness in the
right-hand one are given by

s∗ =
s

ε
,

∂φ∗

∂s∗ =
u

ε
, f (x) − t − h = εη(s, t). (3.16)

As described by Wilson (1989), for example, at leading order the slender and rapidly
moving splash jet is governed by the zero-gravity shallow-water equations

for d0(t) < s < c0(t):
∂u0

∂t
+ u0

∂u0

∂s
= 0,

∂η0

∂t
+

∂

∂s
(η0u0) = 0, (3.17)

where c0(t) denotes the leading-order location of the end of the jet (so that η0(c0(t), t) =
0), the leading-order tangential velocity u0 is independent of the coordinate normal
to the impactor and η0 denotes the leading-order thickness of the jet. Moreover,
matching with the inner jet-root region gives the boundary data

on s = d0(t): u0 = 2ḋ0(t), η0 = HJ (t), (3.18)

so that at leading order the rate of change of the cross-sectional area of the right-hand
splash jet is given by (cf. (4.27))

∂

∂t

(∫ c0(t)

d0(t)

η0(s, t) ds

)
= ḋ0(t)HJ (t) (3.19)

relative to the original dimensionless coordinates (in which the cross-sectional area
of the liquid displaced by the impact is of O(1/ε)). Howison et al. (1991, 2004) show
that if the impactor is blunt, so that f ′(x) is continuous at the point of impact, the
leading-order theory leads to the intriguing prediction that the splash jets extend to
infinity immediately after impact, i.e. c0(0

+) = ∞; in contrast, if f ′(x) is discontinuous
at x = 0, such as for the wedge f (x) = |x|, then the extent of each of the splash jets is
finite.

4. Second-order Wagner theory
Proceeding to second order in the analysis described in § 3 leads to the mixed-

boundary-value problem for φ1 depicted in figure 4, with the boundary conditions on
the x-axis being derived by linearizing and imposing each of their full versions on
y = 0, substituting the asymptotic expansions (3.2) and rearranging them as follows.
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x = –d0(t) x = d0(t) y = 0

φ1 = –h0 – h0 + G(x, t)

∂φ1—–∂y ∂φ0—–∂x

=
∂h1—–∂t ∂φ1—–∂y =

∂
—∂x

∂h0—–∂t
φ1 = –h0 – h0 + G(x, t)

∂φ1—–∂y =
∂h1—–∂t

∂h0—–∂t
( f (x) – t)

∇2φ1 = 0

Figure 4. Mixed-boundary-value problem for the potential φ1 in outer region I; the function
G(x, t) is given by (4.3); the initial conditions are φ1(x, y, 0) = 0 and h1(x, 0) = 0; the far-field
conditions are φ1 = O(1/r) as y → −∞ and h1 → 0 as |x| → ∞; the matching conditions at
z = ± d0(t) are described in the text.

The second-order kinematic boundary condition on the body is given by

on y = 0−, |x| < d0(t):
∂φ1

∂y
= −(f (x) − t)

∂2φ0

∂y2
+ f ′(x)

∂φ0

∂x
=

∂

∂x

(
(f (x) − t)

∂φ0

∂x

)
,

where in the final equality Laplace’s equation for φ0 has been used. It will be
convenient to write this condition in terms of the second-order outer stream function,
ψ1, which is equal to zero at the origin, since ψ1 tends to zero in the far field and the
flow is symmetric about the y-axis. Substituting ∂φ1/∂y = − ∂ψ1/∂x and integrating
along the x-axis gives

on y = 0−, |x| < d0(t): ψ1 = (t − f (x))
∂φ0

∂x
; (4.1)

by (3.5), the right-hand side of (4.1) has an inverse-square-root singularity at the free
points.

The second-order Bernoulli condition on the free surface is given by

on y = 0−, |x| > d0(t):
∂φ1

∂t
= −h0

∂2φ0

∂y∂t
− 1

2
|∇φ0|2 = −h0

∂2h0

∂t2
− 1

2

(
∂h0

∂t

)2

,

where in the final equality the leading-order kinematic boundary condition on the
free surface in figure 2 has been used. Integrating by parts and applying the initial
conditions that φ1(x, y, 0) = 0 and h0(x, 0) = 0 gives

on y = 0, |x| > d0(t): φ1 = −h0(x, t)
∂h0

∂t
(x, t) +

1

2

∫ t

0

(
∂h0

∂t
(x, τ )

)2

dτ.

To identify the types of singularity at x = ± d0(t) in the right-hand side of this
expression it is convenient to write it in the form

on y = 0−, |x| > d0(t): φ1 = −h0(x, t)
∂h0

∂t
(x, t) − h0(x, t) + G(x, t), (4.2)

where, by (3.6), the final term is given by (for |x| > d0(t))

G(x, t) =

∫ t

0

∂h0

∂t
(x, τ ) +

1

2

(
∂h0

∂t
(x, τ )

)2

dτ =

∫ t

0

d0(τ )2

2(x2 − d0(τ )2)
dτ. (4.3)

A standard asymptotic analysis shows that the local expansion of G(x, t) at the
right-hand free point is given by

as x ↓ d0(t): G(x, t) ∼ − d0(t)

4ḋ0(t)
ln(x − d0(t)) + G(t), (4.4)
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where

G(t) = − d0(t)

4ḋ0(t)
ln(2d0(t)) +

1

4

∫ t

0

ln(d0(t)
2 − d0(τ )2)

∂

∂τ

(
d0(τ )

ḋ0(τ )

)
dτ, (4.5)

with a similar expansion pertaining at the left-hand one. Thus, the potential on the
non-contact set has an inverse-square-root and a logarithmic singularity at the free
points, these singularities arising from the first and last terms on the right-hand side
of (4.2), respectively, as well as a square-root singularity, with contributions from
both the first and second terms, but not from the third one.

The second-order kinematic boundary condition on the free surface is given by

on y = 0−, |x| > d0(t):
∂φ1

∂y
= −∂2φ0

∂y2
h0 +

∂h1

∂t
+

∂h0

∂x

∂φ0

∂x
=

∂h1

∂t
, (4.6)

where in the final equality Laplace’s equation and the Bernoulli condition for φ0 in
figure 2 have been used.

As in the leading-order problem, the far-field conditions in the caption to figure 4
follow directly from (2.5)–(2.6). It is shown in Appendix B that the matching conditions
at z = d0(t) that (together with the symmetry of the flow about the y-axis) close the
second-order outer problem are given by

as z → d0(t): w1(z, t) ∼ id0(t)(d1(t) + i(f (d0(t)) − t))

(2d0(t)(z − d0(t)))1/2
, (4.7)

as x ↓ d0(t): h1(x, t) ∼ d0(t)d1(t)

ḋ0(t)(2d0(t)(x − d0(t)))1/2
− HJ (t), (4.8)

in terms of d1(t), the second-order correction to the location of the right-hand turnover
point, and of HJ (t), the leading-order thickness of the jet that is ejected from each
of the jet roots. The inverse-square-root singularity on the right-hand side of (4.7)
reflects the response of the second-order outer flow to the second-order correction
to the location of right-hand jet root, which is of size of O(ε2) relative to the outer
coordinates and lies on the body at z = d0(t) + ε(d1(t) + i(f (d0(t)) − t) + o(ε), rather
than at the free point z = d0(t); the horizontal component of this small translation,
εd1(t), drives the inverse-square-root singularity on the right-hand side of (4.8).

The solution may be constructed in three steps by writing w1 = w1,1 + w1,2 + w1,3,
where for j = 1, 2, 3, w1,j = φ1,j +iψ1,j are as follows. First, the boundary conditions
for φ0 and Υ0 in figures 2 and 3 imply that the complex potential

w1,1 = −
(

∂Υ0

∂x
− i

∂Υ0

∂y

) (
∂φ0

∂x
− i

∂φ0

∂y
− i

)
(4.9)

satisfies the mixed-boundary conditions

on y = 0−, |x| < d0(t): ψ1,1 = (t − f (x))
∂φ0

∂x
, (4.10)

on y = 0−, |x| > d0(t): φ1,1 = −h0

(
1 +

∂h0

∂t

)
. (4.11)

Since φ1,1 decays as the inverse square of distance in the far field, it is the least-singular
solution to the mixed-boundary-value problem in figure 4 with G(x, t) replaced by
zero in the Bernoulli condition. Moreover, since w1,1 has an inverse-square-root
singularity at the right-hand free point given by (4.7) with d1(t) replaced by zero,
w1,1 is the complex potential of second-order outer flow driven by the small vertical
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displacements of the jet roots above the undisturbed waterline. Secondly, to account
for G(x, t) being non-zero and given by (4.3), it is necessary to solve for the complex
potential w1,2 that is zero at infinity, least singular at the free points and satisfies the
mixed boundary conditions

on y = 0−, |x| < d0(t): ψ1,2 = 0, (4.12)

on y = 0−, |x| > d0(t): φ1,1 = G(x, t). (4.13)

A standard application of the theory of Riemann mixed-boundary-value problems
implies that

w1,2 =
i(z2 − d0(t)

2)1/2

π

(∫ −d0(t)

−∞
+

∫ ∞

d0(t)

)
G(ξ, t)sgn(ξ )

(ξ 2 − d0(t)2)1/2
dξ

(ξ − z)
(4.14)

provided the branch of the multi-valued integral on the right-hand side of this
expression is selected to satisfy the boundary conditions (4.12)–(4.13). As described
in detail by Gakhov (1966), for example, this is because G(x, t) is Hölder continuous
except at the free points, where it has logarithmic singularities given by (4.4), so that
the integral is well defined in y < 0 and on the contact set, and well defined by its
principal value on the non-contact set away from the free points. Moreover, (4.4)
implies that w1,2 has logarithmic singularities at the free points corresponding to the
sinks in the second-order outer potential flow that drive a flux into each of the jet
roots; the fate of this liquid is described at the end of this section in the context of
the condition for second-order global conservation of mass. That w1,2 tends to zero
at infinity follows from G(x, t) being an even function of x. In practice the evaluation
of (4.14) may be aided by consideration of the analytic continuation of G(x, t) into
y � 0, with the caveat that the branch of the multi-valued function that will inevitably
arise in this process is chosen to be consistent with the boundary conditions (4.12)–
(4.13); see § 6.1 and § 6.2 for two examples. Thirdly, the eigensolution selected by the
matching condition (4.7) is given by

w1,3 =
iA(t)

(z2 − d0(t)2)1/2
, (4.15)

where A(t) is a real function that will be determined shortly; as described above,
the inverse-square-root singularities at the free points in this expression reflect the
response of the second-order outer flow to the small horizontal displacements of the
jet roots along the body.

By the kinematic condition (4.6) and the fact that ψ1,1(x, 0, t) = 0 for |x| >d0(t), the
second-order outer elevation of the free surface is given by h1 = h1,2 + h1,3, where (for
|x| >d0(t))

h1,2(x, t) =

∫ t

0

∂

∂x

(
sgn(x)(x2 − d0(τ )2)1/2

π
−
∫ ∞

d0(τ )

2ξG(ξ, τ )

(ξ 2 − d0(τ )2)1/2
dξ

(x2 − ξ 2)

)
dτ, (4.16)

h1,3(x, t) =

∫ t

0

A(τ )|x|
(x2 − d0(τ )2)3/2

dτ. (4.17)

A standard asymptotic analysis (see, for example, Gakhov 1966, § 8) results in the
following local expansions for w1 and h1 at the right-hand free point:

as z → d0(t): w1 ∼ iA(t) − d0(t)(f (d0(t)) − t)

(2d0(t)(z − d0(t)))1/2
− d0(t)

4ḋ0(t)
ln(z − d0(t)) + a(t), (4.18)
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where the principal branch of the logarithm has been taken and

a(t) =
d0(t)

ḋ0(t)
+ G(t) − iπd0(t)

4ḋ0(t)
; (4.19)

as x ↓ d0(t): h1 ∼ A(t)

ḋ0(t)
(
2d0(t)(x − d0(t))

)1/2
+ h

†
1(t), (4.20)

where

h
†
1(t) = h1,2(d0(t), t) −

∫ t

0

d0(t)

(d0(t)2 − d0(τ )2))1/2
∂

∂τ

(
A(τ )

d0(τ )ḋ0(τ )

)
dτ. (4.21)

The local expansion (4.18) is in agreement with (4.7), as is (4.20) with (4.8), provided
the matching conditions

A(t) = d0(t)d1(t), h
†
1(t) = −HJ (t) (4.22a, b)

pertain. Since (4.22a) gives A(t) in terms of d1(t), the second-order-Wagner condition
(4.22b) leads to the singular-integral equation∫ t

0

d0(t)

(d0(t)2 − d0(τ )2))1/2

∂

∂τ

(
d1(τ )

ḋ0(τ )

)
dτ = HJ (t) + h1,2(d0(t), t) (4.23)

for d1(t). By (3.10a), (3.12) and (4.16), the right-hand side of (4.23) may be written as
a function of d0(t):

Hc(d0) =
d0

2π

(∫ π/2

0

f ′(d0 sin θ) sin θ dθ

)2

+ h1,2(d0, ω(d0)), (4.24)

where t = ω(d0) is the inverse of d0 = d0(t). Hence, (4.23) may be inverted to give

d1(t) =
2ḋ0(t)

π

∫ π/2

0

Hc(d0(t) sin θ) dθ. (4.25)

This completes the solution of the second-order outer problem. The complexity of
the expressions for ∂Υ0/∂x − i∂Υ0/∂y, w1,2, h1,2 and Hc has restricted further analytic
progress to specific body profiles such as those described in § 6.

By (3.10a), the sink at the right-hand free point corresponding to the logarithmic
term in (4.18) drives a liquid flux 2ḋ0(t)HJ (t) into the right-hand jet root; the inner
solution reviewed in Appendix A implies that half of this flux is ejected into the right-
hand splash jet in accordance with (3.19), while the other half is ‘swept back’ under the
impactor. To check that this is consistent with the condition for second-order global
conservation of mass note that the kinematic and far-field conditions in figure 4,
together with the local expansions (4.18) and (4.20), imply that the second-order
version of (3.13) is given by

∂

∂t

(∫ ∞

d0(t)

h1(x, t) dx

)
= −2ḋ0(t)HJ (t) − ḋ0(t)h1(t). (4.26)

Hence, the second-order Wagner condition (4.22b) is a necessary and sufficient
condition for second-order global conservation of mass, which is given by∫ ∞

d0(t)

h1(x, t) dx +

∫ t

0

ḋ0(τ )HJ (τ ) dτ = 0, (4.27)
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i.e. the decrease in the total cross-sectional area of the outer splash-up regions due to
the second-order correction to the elevation of the free surface is equal to the total
cross-sectional area of the splash jets.

5. The upward force on the impactor
The asymptotic expansion of (2.7) is found by splitting the range of integration into

segments corresponding to each of the regions I, II, III and IV, expanding each of
them and summing their contributions. In Appendix C it is shown that the resulting
expansion for the upward force on the impactor is given by

F ∗(t) =
F0(t)

ε2
+

F1(t)

ε
+ o(ε−1), (5.1)

where the leading-order term

F0(t) = πd0(t)ḋ0(t) (5.2)

receives the usual contribution from only the leading-order outer pressure, while the
second-order term

F1(t) = 2ḋ0(t)G(t) − d0(t)

2
ln(2d0(t)) − 2

∂

∂t

(∫ d0(t)

0

φ1(x, 0, t) dx

)
(5.3)

in which G(t) is given by (4.5), receives contributions from both the second-order outer
pressure and from the leading-order jet-root pressure, but not from the intermediate
region (as required) or from the splash jets. At leading order the pressure on the
impactor takes its maximum value of ḋ0(t)

2/2ε2 at the relative stagnation points in
each of the jet-root regions (see figure 8); to obtain the second-order correction to
this prediction it is necessary to solve the second-order jet-root problem, an analysis
that is not pursued here.

6. Applications
This section begins with an application of the second-order Wagner theory of § 2–§ 5

to the symmetric impact of a wedge. The predictions for the location of the turnover
points and for the upward force are compared with those of the similarity solution
derived by Dobrovol’skaya (1969) via the numerical solution by Zhao & Faltinsen
(1993). The second-order theory for the symmetric impact of a parabola is then
described, and the prediction for the upward force is compared to the experimental
data of Campbell & Weynberg (1980) and of Cointe & Armand (1987). Finally,
the results of applying the second-order theory to the symmetric impact of a solid
parabola onto a liquid one are outlined.

6.1. The symmetric impact of a wedge

For the wedge f (x) = |x| the flow is self-similar, with d0(t) = α0t , d1(t) = α1t , where α0

and α1 are real constants. The expressions (3.6), (3.10a) and (3.11) give

for |x| > α0t: h0(x, t) = −t +
x

α0

sin−1
(α0t

x

)
, α0 =

π

2
, HJ (t) =

t

4
; (6.1)

while (3.5) and (3.14) imply that

∂Υ0

∂x
− i

∂Υ0

∂y
= −

∫ t

0

(
∂φ0

∂x
− i

∂φ0

∂y

)
dτ = −it +

iz

α0

sin−1

(
α0t

z

)
, (6.2)
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with appropriate choice of the branch of sin−1(α0t/z), and hence, by (4.9), that

w1,1 =

(
t − z

α0

sin−1

(
α0t

z

))
z(

z2 − α2
0 t

2
)1/2

. (6.3)

An analytic continuation of

G(x, t) = − x

4α0

ln

(
x − α0t

x + α0t

)
− t

2
, |x| > α0t,

into y � 0, whose real (imaginary) part is an even (odd) function of x, is given by
G(z, t), with the branch cut of the term containing the logarithm being (−α0t, α0t) on
the x-axis, where

G((x − i0), t) = − x

4α0

(
ln

∣∣∣∣x − α0t

x + α0t

∣∣∣∣ −
{

iπ (|x| < α0t)
0 (|x| > α0t)

})
− t

2
,

so that

w1,2 = − z

4α0

ln

(
z − α0t

z + α0t

)
− t

2
− iπ

4α0

(
z −

(
z2 − α2

0 t
2
)1/2)

. (6.4)

Since A(t) = d0(t)d1(t) = α0α1t
2 by (4.22a), the second-order outer complex potential

is given by

w1 =

(
t − z

α0t
sin−1

(
α0t

z

))
z(

z2 − α2
0 t

2
)1/2

− z

4α0

ln

(
z − α0t

z + α0t

)
− t

2

− iπ

4α0

(
z −

(
z2 − α2

0 t
2
)1/2)

+
iα0α1t

2(
z2 − α2

0 t
2
)1/2

, (6.5)

and hence (for |x| >α0t)

h1(x, t) = − 1

2
h0(x, t) +

α1

α2
0

(
α0t |x|(

x2 − α2
0 t

2
)1/2

− x sin−1

(
α0t

x

))
, (6.6)

giving

h
†
1(t) = −1

2
(α0t − t) − α1t. (6.7)

It follows from the second-order-Wagner condition (4.22b) that

α1 = −1

4
(π − 3); (6.8)

as required this expression is in agreement with both (4.25) and (4.27), and implies
that in terms of the original dimensionless variables the locations of the turnover
points, x∗ = ± d∗(t), are given by

d∗(t)

t
=

π

2ε
− 1

4
(π − 3) + o(1), (6.9)

Finally, (5.1)–(5.3) imply that the upward force on the wedge is given by

F ∗(t)

t
=

π3

4ε2
− π

ε

(
2K − 1 +

3π2

8
− 3π

4

)
+ o(ε−1). (6.10)

where K ≈ 0.916 is Catalan’s constant.
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Figure 5. Comparison of the predictions of leading-order Wagner theory (LOWT) and of
second-order Wagner theory (SOWT) with the numerical data (Z&F data) of Zhao &
Faltinsen (1993) for (a) the x∗-coordinate of the right-hand turnover point and (c) the upward
force during the uniform normal impact of a wedge of deadrise angle α = arctan(ε). (b,d)
The corresponding percentage errors in the leading- and second-order predictions in (a,c),
respectively, based on the best-fit curves (Z&F fit) described in the text. The numerical data
are extracted from table 2 of Zhao & Faltinsen (1993) by setting εd∗(t)/t =1 + zmax(t

†)/V t†

and ε2F ∗(t)/t = ε2F †(t†)/ρV 2t† in terms of the original dimensional variables and of the
y†-coordinate of the point of maximum pressure, zmax(t

†).

Figures 5(a) and 5(c) contain plots of the predictions for the leading- and second-
order x∗-coordinate of the right-hand turnover point and for the upward force,
together with the numerical results of Zhao & Faltinsen (1993) for the similarity
solution of Dobrovol’skaya (1969). In each of these plots the horizontal ordinate
is the deadrise angle, which is given by α = arctan ε, while the vertical ordinate is
chosen to magnify the small discrepancies between the predictions and data. These
discrepancies are quantified in figures 5(b) and 5(d) by the percentage error of each
of them relative to the least-squares best-fit quadratics in α through the numerical
data, which have been chosen to intersect at α = 0 with the relevant leading-order
values predicted by Wagner theory. The second-order prediction for d∗(t) offers a
small improvement over the leading-order one, both of them being within 10% of the
numerical data for deadrise angles less than about 30◦ (ε ≈ 0.58). However, the second-
order prediction for the upward force is significantly closer to the numerical data than
the leading-order one; figure 5(d) illustrates that the second-order prediction is within
10% of the numerical data for deadrise angles less than about 23.6◦ (ε ≈ 0.44), while
the leading-order one reaches the same threshold when the deadrise angle is just 6.3◦
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(ε ≈ 0.11). These observations suggest that the second-order prediction may increase
by a factor of about four the domain of applicability of the leading-order one.

It is worth noting that Fraenkel & McLeod (1997) used the all-purpose integral
formulation mentioned in § 1 to derive expansions for the locations of the high-
pressure jet-root regions and for the upward force as the (unknown) contact angle β

between the wedge and free surface tends to zero. These expansions imply that, as
β → 0,

d∗(t)

t
=

(
π

8β

)1/2

− π

4
+ o(1), (6.11)

F ∗(t)

t
= 2

(
d∗(t)

t

)3

cos(α)

(
(2πβ)1/2 − 8(2K − 1)β

π
+ o(β)

)
, (6.12)

which agree with (6.9)–(6.10) up to second order in ε if and only if the contact angle
has the expansion

as ε → 0: β =
ε2

2π
− 3ε3

2π2
+ o(ε3). (6.13)

The leading-order term in this expression is in agreement with the leading-order
predictions of the theories of Fraenkel & McLeod (1997) and of Wagner (1932),
i.e. at leading order the asymptotic theory is in agreement with the small-ε limit of
the exact one. However, it is not possible to establish whether or not the second-order
correction to the contact angle is correct, and hence whether or not the second-order-
asymptotic theory is in agreement with the small-ε limit of the exact one, without
proceeding to second order in at least the jet-root and jet regions, a necessarily
complicated analysis that is not pursued here. It is encouraging, however, that the
second-order predictions (6.9)–(6.10) are self-consistent in the sense that they are
both in agreement with the small-ε limit of the exact theory if and only if the single
condition (6.13) pertains.

6.2. The symmetric impact of a parabola

For f (x) = x2, expressions (3.6), (3.10b) and (3.11) imply that d0 = ± (2t)1/2, together
with

for |x| > (2t)1/2: h0(x, t) = −t + x2 − |x|(x2 − 2t)1/2, HJ (t) = π (t/2)3/2 , (6.14)

so that (3.5), (3.14) and (4.9) give

w1,1 =
(
t − z2 + z(z2 − 2t)1/2

) z

(z2 − 2t)1/2
. (6.15)

An analytic continuation of

G(x, t) = −x2

4
ln

(
1 − 2t

x2

)
− t

2
, |x| < (2t)1/2

into y < 0 is given by G(z, t), with the branch cuts of the term containing the logarithm
being (−(2t)1/2, 0) and (0, (2t)1/2) on the x-axis, where

G(x − i0, t) = −x2

4

(
ln

∣∣∣∣1 − 2t

x2

∣∣∣∣ −
{

iπsgn(x)
(
0 < |x| < (2t)1/2

)
0

(
|x| > (2t)1/2

) })
− t

2
.

Hence, writing w1,2(z, t) =G(z, t) + w̌1(z, t), with w̌1 = φ̌1 + ψ̌1, it remains to solve for
the complex potential w̌1 that is least singular at the free points, zero at infinity and
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satisfies the mixed boundary conditions

on y = 0, 0 < |x| < (2t)1/2: ψ̌1 = −πx2

4
sgn(x),

on y = 0, x > (2t)1/2: φ̌1 = 0.

This mixed-boundary-value problem was solved by Korobkin (2006) in his analysis
of the normal impact of a liquid parabola onto a planar substrate, with the solution
being given by (for y < 0)

w̌1 = −1

4

(
z2 ln

(
(2t − z2)1/2 − (2t)1/2

(2t − z2)1/2 + (2t)1/2

)
− 2(2t(2t − z2))1/2

)
, (6.16)

with appropriate choice of the branch of the logarithm. Thus, the second-order outer
complex potential is given by

w1 =
t − z2

(z2 − 2t)1/2
+ z2 − z2

4
ln

(
1 − 2t

z2

)
− t

2

− 1

4

(
z2 ln

(
(2t − z2)1/2 − (2t)1/2

(2t − z2)1/2 + (2t)1/2

)
− 2(2t(2t − z2))1/2

)
+

i(2t)1/2d1(t)

(z2 − 2t)1/2
, (6.17)

and hence (for |x| > (2t)1/2)

h1(x, t) =
1

4

(
(4t − 3x2)x sin−1

(
(2t)1/2

x

)
+ 3|x|(2t(x2 − 2t))1/2

)

+

∫ t

0

(2τ )1/2d1(τ )|x|
(x2 − 2τ )3/2

dτ. (6.18)

Remarkably, Hc(d0) = 0 in (4.25), so that d1(t) = 0; in terms of the original
dimensionless variables this gives

d∗(t) =
(2t)1/2

ε
+ o(1). (6.19)

That the second-order term is identically equal to zero for a parabola is an intriguing
result that motivates the analysis in § 6.3 and explains why the leading-order theory
predicts accurately the locations of the pressure maxima, as described below.

A straightforward integration using (5.1)–(5.3) implies that the upward force on the
parabola is given by

F ∗(t) =
π

ε2
− (π + 2)

ε
(2t)1/2 + o(ε−1). (6.20)

Campbell & Weynberg (1980) and Cointe & Armand (1987) present experimental
data for an impacting circular cylinder, which in terms of the original dimensional
variables in § 2 is given by y† = R − (R2 − x†2)1/2 − V t†, where R is the radius and V

is the impact velocity. Assuming that a typical penetration depth L is much smaller
than R and non-dimensionalizing as in § 2 implies that as ε = (L/2R)1/2 → 0, with
εx∗ =O(1), the circular cylinder becomes y∗ =(εx∗)2 − t +O(ε2). Hence, up to second
order the circular cylinder is replaced by the parabola f (x) = x2 in the region of
applicability of Wagner’s theory (as is implicit in the approximate analysis of Cointe &
Armand 1987); as alluded to in § 1, this result applies to the normal impact of an
arbitrary smooth body, with R being its radius of curvature at the point of impact.

The best-fit curve through the experimental data for the elevation of the pressure
maxima in figure 5 of Campbell & Weynberg (1980) implies that the best-fit curve
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Figure 6. (a) Comparison of the predictions of leading-order Wagner theory (LOWT) and of
second-order Wagner theory (SOWT) with the experimental data (C&A data) and approximate
second-order theory (C&A SOT) of Cointe & Armand (1987) and with the best-fit curve (C&W
fit) of Campbell & Weynberg (1980) for the upward force during the impact of a circular
cylinder, with downward velocity V and radius R, at penetration depths less than 0.25R (for
which ε ≈ 0.35). (b) The percentage error in the leading- and second-order predictions based
on the best-fit curve (C&A fit) described in the text.

for the x†-coordinate of the (right-hand) turnover point is a factor of about 1.05
larger than the one predicted by leading-order Wagner theory for V t†/R < 0.06,
which is consistent with d1 being equal to zero in this regime. With regard to the
upward force, since the dimensional variables are related to the dimensionless ones
by F †(t†)/ρV 2R = 2ε2F ∗(t) and V t†/R =2ε2t , ε scales out of the dimensional version
of the second-order prediction for the upward force (as it must), which is valid for
V t†/R � 1 and given by

F †(t†)

ρV 2R
= 2π − 2(π + 2)

(
V t†

R

)1/2

.

Figure 6(a) contains a plot of the predictions for the leading- and second-order upward
force, together with the experimental data and approximate second-order prediction
of Cointe & Armand (1987). Figure 6(b) contains the corresponding percentage errors
based on the best-fit quadratic in (V t†/R)1/2 through the experimental data, which has
been chosen to intersect at t† = 0 with the leading-order value predicted by Wagner
theory. The leading-order theory and the approximate second-order prediction both
rapidly over-estimate the upward force, with the percentage errors reaching 10% when
V t†/R is approximately 0.003 and 0.018, respectively, while the second-order theory
is remarkably close to the best-fit curve, with the percentage error reaching 10%
when V t†/R ≈ 0.15. These observations suggest that the second-order prediction may
increase by two orders of magnitude the domain of applicability of the leading-order
one, and by an order of magnitude that of the approximate second-order one. The
corresponding best-fit curve through the experimental data of Campbell & Weynberg
(1980) is given by

F †(t†)

ρV 2R
=

5.15

1 + 9.5V t†/R
+ 0.275V t†/R
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for V t†/R < 2. Although this fit is not necessarily the optimal one for the small times
of interest here, it is within 18% of the best-fit curve through the experimental data
of Cointe & Armand (1987), and hence, as illustrated in figure 6(a), reasonably close
to the prediction of second-order Wagner theory.

6.3. The symmetric impact of a solid parabola onto a liquid one

For the body profile y∗ = β1(εx
∗)2 − t impacting on an initially stationary liquid

parabola lying in y∗ < −β2(εx
∗)2, where β1 and β2 are real constants such that

β1 + β2 > 0, an analysis paralleling closely the one above gives

d∗(t) =
1

ε

(
2t

β1 + β2

)1/2

+ o(1), (6.21)

F ∗(t) =
π

ε2(β1 + β2)
− (π + 2)

ε

(
2t

β1 + β2

)1/2

+ o(ε−1). (6.22)

Hence, up to second order the locations of the turnover points and the upward force
both depend on the curvature of the body profile, β1, and on the curvature of the
initial liquid profile, −β2, only through the difference between them, β1 + β2. This is a
manifestation of d1(t) being equal to zero in this regime, and confirms the conjecture
made by Korobkin (2005) that, with an error of o(d0) as d0 → 0, the upward force
exerted on a planar substrate by an impacting liquid parabola is equal to the force
on a solid parabola of the same shape impacting on a liquid half-space with the same
velocity.

7. Discussion
A comprehensive account has been given of second-order Wagner theory for the

two-dimensional normal impact of a symmetric body of small deadrise angle on a
half-space of liquid. Although the non-uniformities in the outer expansion of the
potential at the free points raise serious doubts concerning the accuracy of existing ad
hoc approximations in which one or more terms in the second-order outer problem
are neglected or in which the range of integration in the calculation of the force is
truncated, it has been shown that these difficulties can be overcome by a systematic
matched-asymptotic analysis. The second-order outer potential problem was solved
using the displacement potential of the corresponding leading-order outer one and the
theory of Riemann mixed-boundary-value problems, with the relevant eigensolution
and closure conditions being determined by matching. One of these closure conditions
may be viewed as the second-order version of the well-known Wagner condition and
leads to a prediction for the second-order correction to the location of each of
the jet-root regions. The expressions describing leading- and second-order global
conservations of mass were used to confirm that at leading order the liquid displaced
by the impact lies in the splash-up regions, while at second order the decrease in the
cross-sectional area of the splash-up regions is equal to the cross-sectional area of the
splash jets. The second-order theory led to predictions for the upward force on an
impacting wedge and parabola that are consistent with numerical and experimental
data, respectively, and extend the range of applicability of the leading-order theory
from small to moderate deadrise angles.

In § 6.3 the results of applying the second-order theory to the symmetric impact
of a solid parabola onto a liquid one were outlined, illustrating that the method
of solution of the second-order outer problem in § 4 is applicable to water entry
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problems with more complicated geometries. For example, the case of oblique impact
of an asymmetric body profile at constant velocity can be solved with minor algebraic
modifications. These generalizations are superseded, however, by the need for a more
comprehensive comparison with experiment, with numerical solutions of the full
problem and with the approximate models outlined in § 1 of the predictions of the
second-order theory, which would be aided by the construction of the second-order
jet-root solution and of the resulting composite expansion for the pressure on the
body.

With regard to improving further the accuracy of the predictions, it is anticipated
that the third-order force on the impactor is a factor of O(ε2) or O(ε2 ln(1/ε)) smaller
than the leading-order one, since it receives contributions from pressure in the third-
order outer, second-order jet-root and leading-order jet regions (see figure 1). The
higher-order analysis required to establish the coefficient of the third-order term in
the expansion for the force, and whether or not a logarithmic term arises, is therefore
necessarily complicated and, for a strictly convex body profile, sensitive to whether or
not the splash jets separate, as is often the case in practice. Vanden-Broeck & Keller
(1989) showed that even small amounts of surface tension can have a significant
effect on the existence and location of a separation point, so the third-order analysis
presents in addition some open modelling questions.

In the three-dimensional problem the flow in the jet-root region is quasi-two-
dimensional in each of the planes perpendicular to the turnover curve, provided
the impactor is sufficiently smooth away from the point of impact. Although some
excellent analytical progress has recently been made by Scolan & Korobkin (2001)
and Korobkin & Scolan (2006) on the solution of the leading-order outer mixed-
boundary-value problem for several classes of three-dimensional body profile, the
solution of the corresponding second-order one presents some highly non-trivial
challenges for the burgeoning field of higher-order Wagner theory.

The author acknowledges the support of the EPSRC (GR/S93585/01(P)), of the
Royal Commission for the Exhibition of 1851 and of Boston University (the latter in
the form of a Visiting Scholarship). The author is grateful to Professor L. E. Fraenkel,
Dr S. D. Howison, Professor J. R. King, Professor A. A. Korobkin, Dr J. R. Ockendon
and the anonymous referees for some useful comments.

Appendix A. Intermediate and inner regions
To match the second-order outer solution with the leading-order one in the right-

hand inner jet root using Van Dyke’s matching rule it is necessary to introduce an
(artificial) intermediate region between them. In this paper the smallest admissible
intermediate region, of size of the order of the penetration depth, is employed in
order to give an explicit account of the geometric structure that leads to the matching
conditions (3.3)–(3.4) and (4.7)–(4.8).

In the right-hand intermediate region the relevant scalings are given by

z = d0 + εẑ, w = id0 + ε1/2ŵ, h = f (d0) − t + ε1/2ĥ,

where in terms of ẑ = x̂ + iŷ the free surface is given by ŷ = ĥ(x̂, t). The relevant
expansions are given by

ŵ(ẑ, t) = ŵ0(ẑ, t) + ε1/2 ln(1/ε) b1(t) + ε1/2ŵ1(ẑ, t) + o
(
ε1/2

)
,

ĥ(x̂, t) = ĥ0(x̂, t) + ε1/2h1(x̂, t) + o
(
ε1/2

)
,
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Figure 7. The mixed-boundary-value problems for φ̂0 and φ̂1 in intermediate region II; see
text for the matching conditions in the far field and at ẑ = d1 + i(f (d0) − t).

where b1(t) is to be determined by matching. The term id0 on the right-hand side
of the expression for w corresponds to the liquid flux associated with the first term
on the right-hand side of (3.13). While the presence of the solely time-dependent
term ε1/2 ln(1/ε)b1(t) in the expansion of ŵ may be rather obscure at this point, its
lack of significance in the second-order analysis in this paper will become clearer
as the various balances are identified (in particular, it has no effect on the flow
in the intermediate region up to O(ε3/2 ln(1/ε))). At leading order the impactor is
horizontal and given by ŷ = f (d0(t))− t , while the inner region is located at ẑ = d1(t)+
i(f (d0(t)) − t), with both d0(t) and d1(t) being determined as part of the solutions
of the leading- and second-order outer problems. The resulting mixed-boundary-
value problems for φ̂0 = Re(ŵ0) and φ̂1 =Re(ŵ1) are shown in figure 7, where the
boundary conditions have been linearized and imposed on ŷ = f (d0) − t; the motion
of the impactor is felt at O(ε1/2), but not at leading order. Matching will show
that the relevant solutions are the local travelling-wave forms at the right-hand free
point of the corresponding leading- and second-order outer solutions, but with no
inverse-square-root singularity in the complex potential and translated so that the
non-uniformities lie on the body at ẑ = d1 + i(f (d0)−t), rather than on the undisturbed
waterline at ẑ =0; thus,

ŵ0 = −i(2d0(ẑ − d1 − i(f (d0) − t)))1/2, ĥ0 = − (2d0(x̂ − d1))
1/2

ḋ0
,

ŵ1 = iẑ − d0

4ḋ0
(ln(ẑ − d1 − i(f (d0) − t)) + iπ) + b2, ĥ1 = ĥ

†
1 + f ′(d0)(x̂ − d1),

in which b2(t) and ĥ
†
1(t) to be determined by matching.

The right-hand jet root is of size of the order of the deadrise-angle squared and
lies on the body, with the relevant scalings being given by

ẑ = d1 + i(f (d0) − t) + εZ, ŵ = ε1/2W, ĥ = ε1/2H,

where in terms of Z = X + iY the free surface Y = H (X, t) is multi-valued. It follows
that at leading order the turnover point lies at X = d2 and the impactor is horizontal
and located at Y = f ′(d0)d1. The relevant expansions are given by

W (Z, t) = ln(1/ε)c1(t) + W0(Z, t) + o(1), H (X, t) = H0(X, t) + o(1),

where c1(t) is to be determined by matching and has no effect on the leading-order
flow up to O(ε2 ln(1/ε)). The kinematic boundary condition on the body is linearized
and imposed on Y = f ′(d0)d1, while the boundary conditions on the free surface are
linearized and imposed on Y = H0(X, t). Assuming that the liquid does not separate
from the base and writing Re(W0) = ḋ0X + Φ0, the familiar leading-order problem
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(d2(t), f ′ (d0(t))d1(t) – (1 + 4/π)HJ (t))
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Figure 8. The leading-order jet-root problem for Φ0 = − ḋ0X + Re(W0) in inner region III
showing the streamlines, relative stagnation point (RSP) and dividing streamline (DSL) in the
moving frame; S and N denote the tangential and normal coordinates to the (multi-valued)
free surface Y = H0(X, t) in the directions indicated; the far-field matching conditions are
ḋ0X + Φ0 = O(R1/2) as Y → −∞, where R2 = X2 + Y 2, and H0 =O(−X1/2) as X → ∞.

for Φ0 is shown in figure 8; HJ (t) is the thickness of the jet that is ejected along
the body with speed ḋ0(t) (relative to the moving frame) and the far-field conditions
follow from matching with the intermediate flow, as shown below. As described by
Cointe & Armand (1987), Howison et al. (1991) and Wagner (1932), for example,
the solution to this well-known Helmholtz cavity flow problem for Φ0 is found by
standard conformal mapping methods and implies that the leading-order complex
potential in the jet root is given by

W0 = c2 − 2ḋ0HJ

π

(
2ζ 1/2 + ln ζ

)
, Z = d2 + if ′(d0)d1 − HJ

π

(
1 + ζ + 4ζ 1/2 + ln ζ

)
,

where c2(t) is to be determined by matching; the principal branch of ln ζ has been
taken in both of these expressions, so that the fluid domain in figure 8 is mapped by
the second of them onto the upper half of the ζ -plane. The free surface is given by
(for ζ = − ξ < 0)

H0 = −HJ − 4HJ ξ 1/2

π
, X =

HJ

π
(ξ − ln ξ − 1).

Half of the liquid flux, 2ḋ0HJ , driven into the inner region by the source in the far-
field is ejected into the splash jet (via the liquid ‘channelled around’ the free surface
in the region between the free surface, the wall and the dividing streamline in the
moving frame), while the other half is ‘swept back’ under the impactor (via the liquid
in the region below the dividing streamline and the impactor in the moving frame).
The leading-order pressure takes its maximum value at the relative stagnation point
(see § 5 and Appendix C).

In the far field, as Y → −∞,

W0 = −4iḋ0

(
HJ Z

π

)1/2

− 2ḋ0HJ

π
(ln Z + iπ) + c3 + O

(
lnZ

Z1/2

)
,

where the principal branch of the logarithm has been taken and

c3 = c2 +
7

π
ḋ0HJ +

2ḋ0HJ

π
ln

HJ

π
;
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likewise, as X → ∞ the lower free surface is given by

H0 = −4

(
HJ X

π

)1/2

+ f ′(d0)d1 − HJ + O

(
lnX

X1/2

)
.

Appendix B. Matching details
The outer (I), intermediate (II) and inner (III) solutions are now matched using

Van Dyke’s matching rule (in which logarithmic terms in ε are treated as being of
order unity relative to algebraic ones for the purposes of matching).

Expanding in intermediate variables and to three terms (with respect to powers
of ε1/2) the three-term outer expansion for the complex potential gives (in the usual
notation)

II3I3w = II3

[
w0(d0 + εẑ, t) + εw1(d0 + εẑ, t)

]
= id0 + ε1/2

(
−i(2d0ẑ)

1/2 +
iA − d0(f (d0) − t)

(2d0ẑ)1/2

)

+ ε ln(1/ε)

(
d0

4ḋ0

)
+ ε

(
iẑ − d0

4ḋ0

(ln ẑ + iπ) + a

)
.

Expanding in outer variables and to three terms the three-term intermediate expansion
for the complex potential gives

I3II3w = id0 − i(2d0(z − d0))
1/2 + i(z − d0) + ε ln(1/ε)

(
b1 − d0

4ḋ0

)

+ ε

(
id0(d1 + i(f (d0) − t))

(2d0(z − d0))1/2
− d0

4ḋ0

(ln(z − d0) + iπ) + b2

)
.

Applying Van Dyke’s matching rule, by writing these expressions in common variables
using z = d0 + εẑ and equating them, gives

A = d0d1, b1 =
d0

4ḋ0

, b2 = a. (B 1a−c)

Similarly, for the free surface

II3I3h = h0(d0, t) + ε1/2

(
− (2d0x̂)1/2

ḋ0

+
A

ḋ0(2d0x̂)1/2

)
+ ε(h†

0x̂ + h
†
1),

I3II3h = f (d0) − t − (2d0(x − d0))
1/2

ḋ0

+f ′(d0)(x−d0)+ε

(
d0d1

ḋ0(2d0x̂)1/2
+ ĥ

†
1 − f ′(d0)d1

)
,

with x = d0 + εx̂, giving in addition to (B 1a) the matching conditions

h0(d0, t) = f (d0) − t, h
†
0 = f ′(d0), h

†
1 = ĥ

†
1 − f ′(d0)d1. (B 2a−c)

Expanding in inner variables and to three terms the three-term intermediate
expansion for the complex potential gives

III3II3w = id0 + ε ln(1/ε)

(
b1 +

d0

4ḋ0

)

+ ε

(
− i(2d0Z)1/2 − d0

4ḋ0

(ln Z + iπ) + b2 + i(d1 + i(f (d0) − t))

)
.



82 J. M. Oliver

Expanding in intermediate variables and to three terms the three-term inner expansion
for the complex potential gives

II3III3w = id0 + ε1/2

(
− 4iḋ0

(
HJ

π
(ẑ − d1 − i(f (d0) − t))

)1/2)

+ ε ln(1/ε)

(
c1 − 2ḋ0HJ

π

)
+ ε

(
− 2ḋ0HJ

π
(ln(ẑ − d1 − i(f (d0) − t)) + iπ) + c3

)
.

Equating these expressions using ẑ = d1 + i(f (d0) − t) + εZ gives

HJ =
πd0

8ḋ 2
0

, c1 = b1 +
d0

4ḋ0

, c3 = b2 + i(d1 + i(f (d0) − t)). (B 3a−c)

Similarly, for the free surface

III3II3h = f (d0) − t + ε

(
− (2d0X)1/2

ḋ0

+ ĥ
†
1

)
,

II3III3h = f (d0) − t + ε1/2

(
− 4

(
HJ

π
(x̂ − d1)

)1/2)
+ ε(f ′(d0)d1 − HJ ),

with x̂ = d1 + εX, giving in addition to (B 3a) the matching condition

ĥ
†
1 = f ′(d0)d1 − HJ . (B 4)

The matching conditions (B 2a) and (B 3a) confirm that the local expansions (3.3)
and (3.4) give the correct local behaviour for w0 and h0 at the right-hand free point.
The matching condition (B 2b), in which h

†
0 is given by (3.9), leads to a singular

integral equation for d0(t), with inverse (3.12), so that (B 2b) is equivalent to the
leading-order Wagner condition (B 2a). Combining (B 2c) and (B 4) leads to the
second-order Wagner condition that h

†
1 = − HJ , which together with (B 1a) confirms

that (4.7) and (4.8) give the correct local behaviour for w1 and h1 at the right-hand
free point. Moreover, the functions b1(t), b2(t), c1(t) and c2(t) in the intermediate and
inner solutions above are related to a(t), d0(t) and d1(t), all of which are determined
as part of the leading- and second-order outer solutions, by

b1 =
d0

4ḋ0

, b2 = a, c1 =
d0

2ḋ0

, c2 = a + i(d1 + i(f (d0) − t)) − 7ḋ0HJ

π
− 2ḋ0HJ

π
ln

HJ

π
.

(B 5)

Hence, in particular, it is necessary to proceed to higher order to determine d2(t), an
analysis that is not pursued here.

Appendix C. Expansion of the upward force on the impactor
The asymptotic expansion of (2.7) is found by splitting the range of integration

into the contributions from each of the regions by writing F ∗(t) = FI (t) + FII(t) +
FIII(t) + FIV(t), where

FI (t) = 2

∫ (d−δ1)/ε

0

p∗(x∗, f (εx∗) − t, t) dx∗, (C 1)

FII(t) = 2

∫ (d−δ2)/ε

(d−δ1)/ε

p∗(x∗, f (εx∗) − t, t) dx∗, (C 2)
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FIII(t) = 2

∫ (d+δ2)/ε

(d−δ2)/ε

p∗(x∗, f (εx∗) − t, t) dx∗, (C 3)

FIV(t) = 2

∫ c∗

(d+δ2)/ε

p∗(x∗, f (εx∗) − t, t) dx∗, (C 4)

and δ1 and δ2 are two small intermediate parameters, with ε2 � δ2 � ε � δ1 � 1.
In the outer region I, p∗ = ε−1p0 + p1 + o(1), where

p0 = −∂φ0

∂t
, p1 = −∂φ1

∂t
− 1

2

((
∂φ0

∂x

)2

+

(
∂φ0

∂y

)2)
. (C 5)

Since (for |x| <d0(t))

p∗(x∗, (f (εx)−t), t) = ε−1p0(x, 0, t)+(f (x)−t)
∂p0

∂y
(x, 0, t)+p1(x, 0, t)+o(1), (C 6)

where (for |x| <d0(t))

p0(x, 0, t) =
d0ḋ0(

d 2
0 − x2

)1/2
,

∂p0

∂y
(x, 0, t) = 0, p1(x, 0, t) = −∂φ1

∂t
− d 2

0

2
(
d 2

0 − x2
) , (C 7)

it follows that

FI (t) =
2d0ḋ0

ε2
sin−1

(
1 − δ1

d0

)
+

d0

2ε
ln

(
δ1

2d0 + δ1

)
− 2

ε

∫ d0−δ1

0

∂φ1

∂t
dx+o(ε−1). (C 8)

In the intermediate region II, p∗ = ε−3/2p̂0 + ε−1p̂1 + o(ε−1), where

p̂0 = ḋ
∂φ̂0

∂x̂
, p̂1 = ḋ

∂φ̂1

∂x̂
− 1

2

((
∂φ̂0

∂x̂

)2

+

(
∂φ̂0

∂ŷ

)2)
, (C 9)

Since (for x̂ < d1(t))

p(x̂, f (d0 + εx̂) − t, t) = p̂0(x̂, f (d0) − t, t) + ε1/2p̂1(x̂, f (d0) − t, t) + o
(
ε1/2

)
, (C 10)

where (for x̂ < d1(t))

p̂0(x̂, f (d0) − t, t) =
(2d0)

1/2ḋ0

2(d1 − x̂)1/2
, p̂1(x̂, f (d0) − t, t) = 0, (C 11)

it follows that

FII(t) =
ḋ0(2d0)

1/2

ε2

(
(δ1 + εd1)

1/2 − δ
1/2

2

)
+ o

(
ε−3/2δ1

)
. (C 12)

In the inner region III, p∗ = ε−2P0 + o(ε−2), where P0 is given in terms of the
leading-order inner potential Φ0 in figure 8 by

P0 =
1

2

(
ḋ 2

0 −
(

∂Φ0

∂X

)2

+

(
∂Φ0

∂Y

)2)
. (C 13)

At leading order the pressure on the impactor is given by (for −∞ <X < ∞)

p∗(x∗, (f (εx) − t), t) = ε−2P0(X, f ′(d0)d1, t) + o(1), (C 14)

where (for ξ > 0)

P0(X, f ′(d0)d1, t) =
ḋ 2

0

2

(
1 −

(
1 − ξ 1/2

1 + ξ 1/2

)2)
, X(ξ ) = d2 − HJ

π

(
1 + ξ + 4ξ 1/2 + ln ξ

)
.
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Using the second of these expressions to change the integration variable in FIII(t)
from X to ξ implies that

FIII(t) = −4ḋ 2
0 HJ

επ

∫ ξ+

ξ−

dξ

ξ 1/2
+ o(ε−1), (C 15)

where ξ± are the roots of X(ξ±) = ± δ2/ε
2, so that, as δ2/ε

2 → ∞,

ξ 1/2
− =

(
δ2π

ε2HJ

)1/2

− 2 + o(1) (C 16)

while ξ
1/2
+ is exponentially small. Hence, the leading-order contribution to the force

on the impactor from the jet-root region is given by

FIII(t) =
8ḋ 2

0 HJ

ε

(
δ2π

ε2HJ

)1/2

− 16ḋ 2
0 HJ

επ
+ o(ε−1); (C 17)

the term of order 1/ε in this expression is in agreement with the analysis of Korobkin
(2006).

Finally, as described in Howison et al. (1991), the pressure on the impactor in the
splash jets is of O(ε) and given in terms of the variables introduced at the end of § 3
by

p∗(x∗, f (εx∗) − t, t) = −εf ′′(s)η0(s, t)u0(s, t)
2 + o(ε), (C 18)

so that

FIV(t) = O(1). (C 19)

Expanding (C 8) and (C 12), with ε2 � δ2 � ε � δ1 � 1, and summing the contri-
butions from (C 8), (C 12), (C 17) and (C 19) implies that the upward force on the
impactor is given by (5.1), where F0 = πd0ḋ0 and

F1 = lim
δ1↓0

[
(2d0)

1/2ḋ0d1

δ
1/2

1

+
d0

2
ln

(
δ1

2d0

)
− 2

∫ d0−δ1

0

∂φ1

∂t
(x, 0, t) dx − 2d0

]
. (C 20)

The local expansion (4.18) guarantees the existence of the limit in (C 20), with the
first of these expressions allowing the second one to be written in the form (5.3).
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